Automatic Preqicate
Abstraction of C Programs

Presented by Xuankang Lin

Outline

- Main contribution
* |ntroduction to C2BP
* Challenges of Predicate Abstraction in C

e Conclusion

Main Contribution

 Model checkers typically operate on abstractions
of systems.

* Use predicate abstraction to model check real
softwares.

* The first to apply Predicate Abstraction to real
world programming languages (C).

Outline

e Main contribution
- Introduction to C2BP

* Challenges of Predicate Abstraction in C

e Conclusion

C2BP - Demo

typedef struct cell { void partition() {
int val; bool {curr==NULL}, {prev==NULL};
struct cell* next; bool {curr->val>v}, {prev->val>v};
} *list; {curr==NULL} = unknown(); // curr = *1;
{curr->val>v} = unknown();
list partition(list *1, int v) { _\ {prev==NULL} = true; // prev = NULL;
list curr, prev, newl, nextCurr; ’///,///7 {prev->val>v} = unknown();
///,///’ skip; // newl = NULL;
curr = while(*) { // while(curr!=NULL)
prev = NULL ‘} — e assume (!{curr==NULL}); 7 4
newl = NULL; - skip; // nextCurr = curr->next
while (curr '= NULL) {— if (%) { // if (curr->val > v) {
nextCurr = curr->next; d’,ﬂ,,fﬂ~f’”§; assume ({curr->val>v}); 7 4
if (curr->val >v) { _— if (%) { // if (prev != NULL) {
if (prev != NULL) { assume (! {prev==NULL}) ; //
prev->next = nextCurr; skip; // prev->next = nextCurr;
} } // }
if (curr == *1) { if () { // if (curr == *1) {
*1 = nextCurr; skip; // *1 = nextCurr;
} } // }
curr->next = newl; skip; // curr->next = newl;
L: newl = curr; L: skip; // newl = curr

} else { } else { // } else {

C2BP

Given a C program P and a set E = {®,,®.,...,®.} of
oredicates, C2BP automatically constructs an
abstraction of P, i.e. a boolean program BP(P,E).

BP(P, E) is a program that has identical control
structure to P but contains only |E| boolean variables.

“Abstraction”: the set of execution traces of BP(P.E)
IS a superset of the set of execution traces of P.

Soundness: a path in P => a path in BP(P, E)

After C2BP

BP(P, E) can be analyzed precisely using a BEBOP that
performs inter-procedural data-flow analysis using binary
decision diagrams.

BEBOP is a symbolic model checker for boolean
programs.

BEBOP can generate an invariant representing the
reachable states at a program point of the boolean
program.

This invariant can be useful, e.g. to refine alias information.

Outline

e Main contribution
e |ntroduction to C2BP

- Challenges of Predicate Abstraction in C

e Conclusion

Challenges of
Predicate Abstraction in C

- Pointers

 Procedures & Procedure Calls

e Unknown Values

* Precision-efficiency tradeotft

Challenge -
Pointers & Aliasing

 Use weakest liberal precondition to propagate.
WP(op, Q)

« “weakest”: v P . {P} op {Q}, P => WP(op, Q)

* Problem: { Qle/x] } x:= e {Q } does not hold with
pointers!

e ¢.0. WP(x:=3, "0 >5)isnot *p > 5. Because p
may points to x.

Challenge -
Pointers & Aliasing

Solution: divide into two cases, when there is
aliasing & when there isn't.

For WP(x:=e, ®) where y Is a pointer mentioned in ¢
* Olx, e, y] = (&x =&y N dlely]) V (&x = &y N\)

Constraint on C program: no multiple dereference
(€.9.7"P)

Challenge -
Pointers & Aliasing

 Worst case: Exponential!

 C2BP uses a pointer analysis to improve the
orecision of the WP(op, Q) computation.

e |f the pointer analysis says that x and y cannot be
aliases, only one branch of the \/ is needed.

Challenges of
Predicate Abstraction in C

e Pointers

- Procedures & Procedure Calls

e Unknown Values

* Precision-efficiency tradeotft

Challenge -
Procedure & Procedure Calls

* Procedure Calls can be challenging when there are pointers.

 Needs to update those that may have been modified by
the function)

* Two Passes
1. Generate signatures of each function in isolation.

2. Each procedure can be abstracted given only the
signatures of the abstractions of its callees.

 Modular

Challenge -
Procedure & Procedure Calls

e A signature of a procedure P is: // P is its BP(P, E)
1. Fp, the set of formal parameters of P
2. t, the return variable of P
3. Et, the set of formal parameter predicates of P

4. E:, the set of return predicates of P’

Challenge -

Procedure & Procedure Calls

Ef Is the subset of predicates that do not refer to any local
variables of R.

E. contains those predicates that mention return variable but
do not mention any (other) locals, as callers will not know
about these locals.

For a call of form v := P(ay, ap, ..), any predicate that mentions

* v /a global variable / a (possibly transitive) dereterence of
an actual parameter to the call

must be updated.

Challenges of
Predicate Abstraction in C

e Pointers

 Procedures & Procedure Calls

- Unknown Values

* Precision-efficiency tradeotft

Challenge - Unknown Values

 Some effect in C may be hard to determine.

e SO they just use ™" to represent non-deterministic,
as that in

e if (*){assume(...) ...}

Challenges of
Predicate Abstraction in C

e Pointers

 Procedures & Procedure Calls

e Unknown Values

- Precision-efficiency tradeoff

Challenge -
Precision vs. Efficiency

 Running time of C2BP is dominated by the cost of theorem proving.
« \Worst case is exponential.

o Several optimizations to reduce the number of calling a theorem
prover.

1. It a subset of formula can already imply ¢, the whole formula
implies ¢

2. Update values of boolean variable only when necessary
3. Reduce the number of boolean variables.

4. Use syntactic heuristics.

Outline

e Main contribution
e |ntroduction to C2BP

* Challenges of Predicate Abstraction in C

- Conclusion

Conclusion - Effectiveness

* Used in the SLAM toolkit to
check temporal safety
properties of Windows NT
device drivers.

* Discover invariants regarding
array bounds checking and
ist-manipulating code.

program | lines | predicates | thm. prover | runtime program | lines | predicates | thm. prover | runtime
calls (seconds) calls (seconds)

floppy 6500 | 23 5509 o8 kmp 75 4 286 7

oct] 1250 | 5 500 13 gsort 45 2 199 5

openclos | 544 5] 132 6 partition | 55 1 263 9

srdriver | 350 | 30 3034 93 listfind 37 6 4412 172

log 236 | 6 98 5 reverse | 73 | 7 26769 747

Table 1: The device drivers run through C2Bp.

Table 2: The array and heap intensive programs analyzed
with C2Bp.

Conclusion

* [heir approach may also be used to deal with other
real world languages while applying predicate

abstraction.

 C2BP only handles given predicates.

* They have another tool NEWTON to generate
and refine predicates automatically.

* Only for single-thread programs (at least in this
paper).

Outline

Main contribution
Introduction to C2BP
Challenges of Predicate Abstraction in C

Conclusion

- Questions?

