
Automatic Predicate 
Abstraction of C Programs

Presented by Xuankang Lin



Outline

• Main contribution

• Introduction to C2BP 

• Challenges of Predicate Abstraction in C 

• Conclusion



Main Contribution

• Model checkers typically operate on abstractions 
of systems. 

• Use predicate abstraction to model check real 
softwares. 

• The first to apply Predicate Abstraction to real 
world programming languages (C).



Outline

• Main contribution 

• Introduction to C2BP

• Challenges of Predicate Abstraction in C 

• Conclusion



C2BP - Demo



C2BP
• Given a C program P and a set E = {φ1,φ2,…,φn} of 

predicates, C2BP automatically constructs an 
abstraction of P, i.e. a boolean program BP(P,E). 

• BP(P, E) is a program that has identical control 
structure to P but contains only |E| boolean variables. 

• “Abstraction”: the set of execution traces of BP(P,E) 
is a superset of the set of execution traces of P. 

• Soundness: a path in P => a path in BP(P, E)



After C2BP
• BP(P, E) can be analyzed precisely using a BEBOP that 

performs inter-procedural data-flow analysis using binary 
decision diagrams. 

• BEBOP is a symbolic model checker for boolean 
programs. 

• BEBOP can generate an invariant representing the 
reachable states at a program point of the boolean 
program. 

• This invariant can be useful, e.g. to refine alias information.



Outline

• Main contribution 

• Introduction to C2BP 

• Challenges of Predicate Abstraction in C

• Conclusion



Challenges of 
Predicate Abstraction in C

• Pointers

• Procedures & Procedure Calls 

• Unknown Values 

• Precision-efficiency tradeoff



Challenge - 
Pointers & Aliasing

• Use weakest liberal precondition to propagate. 
WP(op, Q) 

• “weakest”: ∀ P . {P} op {Q}, P => WP(op, Q) 

• Problem: { Q[e/x] } x := e { Q } does not hold with 
pointers! 

• e.g. WP(x := 3, *p > 5) is not *p > 5. Because p 
may points to x.



Challenge - 
Pointers & Aliasing

• Solution: divide into two cases, when there is 
aliasing & when there isn’t. 

• For WP(x:=e, φ) where y is a pointer mentioned in φ 

• φ[x, e, y] = (&x = &y /\ φ[e/y]) \/ (&x ≠ &y /\ φ) 

• Constraint on C program: no multiple dereference 
(e.g. **p)



Challenge - 
Pointers & Aliasing

• Worst case: Exponential! 

• C2BP uses a pointer analysis to improve the 
precision of the WP(op, Q) computation. 

• If the pointer analysis says that x and y cannot be 
aliases, only one branch of the \/ is needed.



Challenges of 
Predicate Abstraction in C

• Pointers 

• Procedures & Procedure Calls

• Unknown Values 

• Precision-efficiency tradeoff



Challenge - 
Procedure & Procedure Calls
• Procedure Calls can be challenging when there are pointers. 

• Needs to update those that may have been modified by 
the function) 

• Two Passes 

1. Generate signatures of each function in isolation. 

2. Each procedure can be abstracted given only the 
signatures of the abstractions of its callees. 

• Modular



Challenge - 
Procedure & Procedure Calls
• A signature of a procedure P is: // P’ is its BP(P, E) 

1. FP, the set of formal parameters of P 

2. r, the return variable of P 

3. Ef, the set of formal parameter predicates of P’ 

4. Er, the set of return predicates of P'



Challenge - 
Procedure & Procedure Calls
• Ef is the subset of predicates that do not refer to any local 

variables of R. 

• Er contains those predicates that mention return variable but 
do not mention any (other) locals, as callers will not know 
about these locals. 

• For a call of form v := P(a1, a2, ..), any predicate that mentions 

• v / a global variable / a (possibly transitive) dereference of 
an actual parameter to the call 

• must be updated.



Challenges of 
Predicate Abstraction in C

• Pointers 

• Procedures & Procedure Calls 

• Unknown Values

• Precision-efficiency tradeoff



Challenge - Unknown Values

• Some effect in C may be hard to determine. 

• So they just use "*" to represent non-deterministic, 
as that in 

• if (*) { assume(…) … }



Challenges of 
Predicate Abstraction in C

• Pointers 

• Procedures & Procedure Calls 

• Unknown Values 

• Precision-efficiency tradeoff



Challenge - 
Precision vs. Efficiency

• Running time of C2BP is dominated by the cost of theorem proving. 

• Worst case is exponential. 

• Several optimizations to reduce the number of calling a theorem 
prover. 

1. If a subset of formula can already imply φ, the whole formula 
implies φ 

2. Update values of boolean variable only when necessary 

3. Reduce the number of boolean variables. 

4. Use syntactic heuristics.



Outline

• Main contribution 

• Introduction to C2BP 

• Challenges of Predicate Abstraction in C 

• Conclusion



Conclusion - Effectiveness
• Used in the SLAM toolkit to 

check temporal safety 
properties of Windows NT 
device drivers. 

• Discover invariants regarding 
array bounds checking and 
list-manipulating code. 



Conclusion
• Their approach may also be used to deal with other 

real world languages while applying predicate 
abstraction. 

• C2BP only handles given predicates. 

• They have another tool NEWTON to generate 
and refine predicates automatically. 

• Only for single-thread programs (at least in this 
paper).



Outline
• Main contribution 

• Introduction to C2BP 

• Challenges of Predicate Abstraction in C 

• Conclusion 

• Questions?


